Journal of

The Chemical Society,

Chemical Communications

NUMBER 7/1980

Preparation and Crystal Structure of $S_2I_4^{2+}(AsF_6)_2$ containing the Distorted Right Triangular Prismatic Disulphur Tetraiodine(2+) Cation and a Disulphur Unit of Bond Order greater than Two

By JACK PASSMORE,* GEORGE SUTHERLAND, TOM WHIDDEN, and PETER S. WHITE* (Department of Chemistry, University of New Brunswick, P.O. Box 4400, Fredericton, N.B., Canada E3B 5A3)

Summary $S_2I_4^{2+}(AsF_6^{-})_2$ has been prepared and its crystal structure determined in which the $S_2I_4^{2+}$ cation was found to have a distorted right triangular prismatic structure, with one S_2 and two I_2 units joined by weak sulphuriodine bonds; the sulphur-sulphur bond distance is the shortest reported in an isolated compound, and is indicative of the presence of a $3p\pi-3p\pi$ bond and a bond order greater than two.

SULPHUR iodides, until recently regarded as essentially nonexistent,¹ are proving to be very different from the other sulphur halides.² The neutral binary sulphur-iodine species S_2I_2 has been reported, although it is stable only at low temperatures,^{3,4} and attempts to prepare $SI_3^+MF_6^-$ (M = As, Sb), analogous to SX_3^+ (X = F, Cl, Br)⁵ led to stable $S_7I^+MF_6^-$ salts.^{6,7} Subsequently, $[(S_7I)_2I]^{3+}(SbF_6^-)_3$. $2AsF_3^8$ and $(S_7I^+)_4S_4^{2+}(AsF_6^-)_6^9$ were characterized. In an attempt to prepare $S_2I^+AsF_6^-$ (cf. $S_2F^+AsF_6^-)^{10}$ by the reaction of $S_4^{2+}(AsF_6^-)_2^9$ with an excess of iodine, $S_2I_4^{2+}$. $(AsF_6^-)_2$ was characterized as a product, and then synthesized quantitatively in liquid sulphur dioxide according to equation (1).

$${}^{1}_{2}S_{8} + 2I_{2} + 3AsF_{5} \xrightarrow{SO_{2}} S_{2}I_{4}^{2+}(AsF_{6}^{-})_{2} + AsF_{3} \qquad (1)$$

Crystal Data: $S_2I_4^{2+}(AsF_6^{-})_2$, monoclinic, space group C_2/c (C_{2h}^6) , $a = 965 \cdot 0(2)$, $b = 1287 \cdot 4(2)$, $c = 1366 \cdot 4(4)$ pm, $\beta = 93 \cdot 79(2)^\circ$, $U = 1694 \times 10^6$ pm³, Z = 4, $D_c = 3 \cdot 72$ g cm⁻³, μ (Mo- K_{α}) = 118 \cdot 81 cm⁻¹. Data were collected for $2\theta \leq 50^\circ$, 1498 unique reflections, 965 observed $(I \ge 2\sigma)$.

The data were corrected for absorption and the structure was solved by direct methods. Least-squares refinement, with anisotropic thermal parameters for sulphur, iodine, and arsenic gave a final R = 0.074, $R_{\rm w} = 0.119.$ [†] The structure consists of discrete S₂I₄²⁺ and AsF₆⁻ ions with weak anion-cation contacts. Attempts to refine the fluorine thermal parameters anisotropically gave excessively high values indicating some rotational disorder of the AsF₆⁻ units.

FIGURE 1. Structure of $S_2I_4^{2+}$: S(1)-S(1'), $12 \cdot 8(1 \cdot 1)$; S(1)-I(1), 285-8(6); S(1)-I(2), $319 \cdot 5(6)$; I(1)-I(2'), 259-7(2) pm; $\angle I(1)-S(1)-I(2)$, $89 \cdot 5(2)$; S(1)-I(1)-I(2'), $87 \cdot 0(1)$; I(1)-I(2')-S(1'), 78-4(1); S(1')-S(1)-I(1), $101 \cdot 6(3)^{\circ}$. Contacts ($S-F \\ \leqslant 320$; $I-F \\ \leqslant 335$ pm): S(1)-F(5) 303(2); I(1)-F(5), 303(2); I(1)-F(3), 323(5); I(1)-F(4), 327(3); I(2)-F(2), 310(4) pm; non-bonding distance I(1)-I(2) 426-7(3) pm.

† The atomic co-ordinates for this work are available on request from Prof. Dr. G. Bergerhoff, Institute fur Anorganische Chemie, Universität, Gerhard-Domagk-Str. 1, D-5300 Bonn 1, West Germany. Any request should be accompanied by the full literature citation for this communication.

J.C.S. CHEM. COMM., 1980

The $S_2I_4^{2+}$ cation (of C_2 symmetry), represents the first reported example of a hexa-atomic species whose structure approximates to that of a right triangular prism (Figure 1), and, unexpectedly, does not have the structure of the isoelectronic P2I4.11 The sulphur-sulphur bond distance of 182.8(1.1) pm [cf. S_2 , 189.2,¹² and S_2^+ (calculated from photoelectron spectra) 182.5 pm¹³] and the two equal iodine-iodine bond distances of 259.7(2) pm [cf. I₂(g), $266 \cdot 2^{14}$ and $I_2^+ 255 \cdot 7(4)$ pm¹⁵] are consistent with a +2/3charge on each dimer unit and the essentially equal ionization potentials of S_2 [9.36 (±0.02)] and I_2 [9.3995 (±0.0012) eV].16 The sulphur-sulphur bond distance is the shortest so far reported in an isolable compound and corresponds to a bond order of $2\frac{1}{3}$; the iodine-iodine bond distance is consistent with a bond order of $1\frac{1}{3}$. Therefore, like $S_4^{2+,9}$ $S_{2}I_{4}^{2+}$ is an example of a stable species containing $3p\pi-3p\pi$ bonds, and is an exception to the generalization¹⁷ that second-row elements do not form isolable compounds containing homoatomic $p\pi$ - $p\pi$ bonds.

The two planar S₂I₂ units are joined at the sulphursulphur bond with a torsional angle between the planes of 89.9°. The S-I distances of 285.8(6) and 319.5(6) pm are comparable with sulphur-iodine distances in sulphuriodine charge transfer complexes, 18 but are longer than that in $[(H_2N)_2CS]_2I^+$ (262.9 pm)¹⁹, which has a formal sulphuriodine bond order of 0.5, and are less than the sum of the van der Waals' radii (400 pm).¹⁷ The two mutually perpendicular π^* orbitals on the S₂ unit may therefore bond to each I_2^+ unit via a 4-centre 2 electron $\pi^* - \pi^*$ bond, in an asymmetric manner, resulting in preferential bonding between one sulphur and one iodine. A similar bonding scheme has been proposed for the bond linking $[S_3N_2]^+$ units in $[S_6N_4]^{2+20}$ and $[Se_2(C_2F_5)_2]^+$ units in $[(C_2F_5)_2Se_2]_{2n}^{2n+.21}$

It is of interest to note that the structure of $S_2I_4^{2+}$ (containing 13 electron pairs), in which π -bond formation is maximised, can be formally derived²² from Dewar benzene (9 bonding pairs), as indicated in Figure 2. The all- σ bonded isomers (1) and (2), like $Te_6^{4+,23}$ are related^{22,24} to prismane.

FIGURE 2.

(Received, 18th December 1979; Com. 1317.)

- ¹ W. E. Dasent, 'Non-Existent Compounds,' Marcel Dekker, New York, 1965, p. 162.
- ² J. C. Bailar, R. S. Nyholm, and A. F. Trotman-Dickenson, 'Comprehensive Inorganic Chemistry,' Vol. 2, Pergamon, Oxford, 1973, p. 843.

 - ³ V. G. Vahl and R. Minkwitz, Z. Anorg. Allg. Chem., 1978, 443, 217.
 ⁴ G. Krummel and R. Minkwitz, Inorg. Nucl. Chem. Lett., 1977, 13, 213.
 ⁵ J. Passmore, K. Richardson, T. K. Whidden, and P. S. White, Can. J. Chem., in the press.
 - J. Passmore, P. Taylor, T. K. Whidden, and P. S. White, J. Chem. Soc., Chem. Commun., 1976, 689. J. Passmore and G. Sutherland, unpublished results.

 - J. Passmore, G. Sutherland, and P. S. White, J. Chem. Soc., Chem. Commun., 1979, 901.
 J. Passmore, G. Sutherland, and P. S. White, J. Chem. Soc., Chem. Commun., submitted for publication.
 - 1º F. Seel, V. Hartmann, I. Molnar, R. Budenz, and W. Gombler, Angew. Chem. Int. Ed. Engl., 1971, 10, 186.
- ¹¹ Y. C. Leung and J. Waser, J. Phys. Chem., 1956, 60, 539.
 ¹² B. Meyer, D. Jensen, and T. Oomen in, 'Sulphur in Organic and Inorganic Chemistry,' ed. A. Senning, Marcel Dekker, New York,

1972, vol. 2, p. 25.

- 13 J. M. Dyke, L. Golob, N. Jonathan, and A. Morris, J. Chem. Soc., Faraday Trans. 2, 1975, 71, 1026.

- ¹⁴ J. L. Byrke, D. Cohen, Phys., 1955, 23, 1739.
 ¹⁴ I. L. Karle, J. Chem. Phys., 1955, 23, 1739.
 ¹⁵ C. G. Davies, R. J. Gillespie, P. R. Ireland, and J. M. Sowa, Can. J. Chem., 1974, 52, 2048.
 ¹⁶ H. M. Rosenstock, K. Droxl, B. W. Steiner, and J. T. Herron, J. Phys. Chem. Ref. Data, 1977, 6, suppl. 1.
 ¹⁷ F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry,' Interscience, 3rd Edn., 1972.
 ¹⁸ M. E. Docob, Lett. J. Sulfure Chem. 1973, 8, 151.

- M. E. Peach, Int. J. Sulfur Chem., 1973, 8, 151.
 G. H.-Y. Lin and H. Hope, Acta Crystallogr., 1972, B28, 643.
 A. J. Banister, H. G. Clarke, I. Tayment, and H. M. M. Shearer, Inorg. Nucl. Chem. Lett., 1974, 10, 647.
- J. Passmore, E. K. Richardson, and P. Taylor, J. Chem. Soc., Dalton Trans., 1976, 1006.
 D. M. P. Mingos, Nature (London) Phys. Sci., 1972, 236, 99.
 R. C. Burns, R. J. Gillespie, W.-C. Luk, and D. R. Slim, Inorg. Chem., 1979, 18, 3086.

- 24 R. J. Gillespie, Chem. Soc. Rev., in the press.